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1 Changing Bases

Any arbitrary none-null vector ~v ∈ V , where V
is a vector space over Rn and has finite dimension
n = dimV can be expressed in component form
as follows:

~v = vi~ei

Suppose we now change from our old basis {~ei} to
a new basis { ~fi}, such that the new basis is related
to our old basis via the following relation:

~f j = ~e j Si j (1)

By definition, (1) codifies a linear transforma-
tion. We can define an inverse matrix T j k to the
matrix Si j that carries out the inverse transforma-
tion such that the following is true:

~ek = ~f j T j k = ~ei Si j T j k (2)

Note that we assume det(S) 6= 0.
Treating the change of basis as a passive transforma-
tion, i.e. leaving the vectors themselves untouched,

it should be obvious that the components of the
vector will correctly transform via the matrix T .

x ′j = T j i xi (3)

1.1 Gradient... a vector yet?

Take a scalar field ϕ : V → R, unsurprisingly, the
components in our ~e -basis contain derivatives af-
ter the coordinates xi , i.e.: (∇ϕ)i = ∂iϕ; conse-
quently, in the new system, nabla should contain
derivatives w.r.t. the new components: (∇ϕ)′j =
∂ ′i ϕ. The transformation rule we are after is there-
fore one that can transform x ′-derivatives to x-
derivatives. Applying the chain rule will get us
started:

∂ ϕ

∂ x ′j
=
∂ xi

∂ x ′j

∂ ϕ

∂ xi
= Si j

∂ ϕ

∂ xi
(4)

Astonishingly, nabla does not transform theway
we expected a vector to transform! We can rec-
oncile with this discovery by considering what is
meant by the gradient operator, a directional deriva-
tive. For example: if we start at a point ~r0 in space
and would like to know how ϕ(~r0) varies as we
travel in different directions, call that ~h:

d
dt
ϕ(~r0+ t~h) =

∂ ϕ

∂ xi
hi =:∇~hϕ (5)

∇ϕ is a map, in which we insert a direction vec-
tor ~h, and receive a real number, i.e. the speed
∇~hϕ with which ϕ changes in that direction.

This map is necessarily linear in ~h
We can classify the n-component objects we

encountered so far by how they transform, either:

1. like a vector, or

2. like nabla

We can build on this by defining some new ob-
jects.
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1.2 Linear Forms and Dual Space

A linear form on a real vector space V is a linear
map ā : V →R. The set of all linear forms on a
vector space V , {āi} is called the dual space V ∗.

Definition

The sum of any two linear forms is again a linear
form, a telltale sign that we are in a vector space!
And indeed the dual space is a vector space.

Suppose we devise a linear form ω̄ j , such that it
returns the j -th component of a vector:

ω̄ j (~x) = x j (6)

Then the following can be inferred:

ω̄ j (~ei ) = δ j i (7)

ω̄ j is said to be the dual basis to ~ei . And it is also
important to note that dimV ∗ = dimV . By defin-
ing a new dual basis χ̄k via χ̄k ( ~fl ) = δk l , we can
extract the new components of α in {χ̄k}:

α′j = ᾱ(
~f j ) = ᾱ(~ei Si j ) = Si jαi (8)

This is exactly the way that gradient operator
transforms, as it is a linear form.

Objects that transform according to (1) is called
covariant and denoted with a lower index.
Objects that transform according to (3) is called
contravariant and is assigned an upper index.

Key Point

Note that Einstein summation convention will al-
ways contract an upper and a lower index.

• Component-form of vectors: ~v = v i~ei , ᾱ=
α j ω̄

j

• Vector insertion with one-form:
ᾱ( ~v) = α j ω̄ j v

i~e j = αv iδ i
j = αi v i .

• Change of basis: ~f j = S i
j ~ei .

• Inverse matrices: S i
j and T i

j are matrix in-
verses of each other: S i

j T
i
j = δ

i
j , andT a

b S b
c =

δa
c .

We can now introduce amore abstract, multi-slotted
linear machines:

1.3 Tensors

A tensor of rank
�

p
q

�

is a real valued function:

T : (V ∗× ...×V ∗×V × ...×V )→R (9)

The tensor T has p one-form slots and q vector
slots, which is linear in every slot.

Definition

1.3.1 Scalar Products

Using our newly devised object, a tensor, we can
define the scalar product (aka metric) as a two-slot
map:

g : V ×V →R (10)

The metric has the following properties:

• symmetric, i.e. g (~u, ~v) = g ( ~v, ~u) for ~u, ~v ∈
V .

• bilinear, i.e., linear in both slots: for vectors
~u, ~v, ~w ∈V , and number λ,µ ∈R. g (λ~u +
µ~v, ~w) = λg (~u, ~w)+µg ( ~v, ~w)

• positive-definite, for any vector ~v : g ( ~v, ~v)≥
0.

Equipped with the metric in our ‘newly devised’
formalism, we can rigorously define what is meant
by an orthonormal basis.

For a vector space V and a scalar product g :
V ×V →R. A basis with the property:

g (~ei ,~e j ) =
¨

1 if i = j
0 otherwise

(11)

is called an orthonormal basis.

Definition

In an ONB, the matrices gi j and g j i are sim-
ply the unit matrix and thus: ai = a i . The isomor-
phism between V and V ∗, in this case, is canoni-
cal.
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1.4 Rotations

A linear transformation onV which send anONB
to another ONB is a rotation. Rotations are char-
acterised by orthogonal matrices. By means of ex-
tracting components from a vector: i.e.: g ( ~v,~e j ),
we can extract the components of the rotation ma-
trix S i

j : S i
j = g (~ei , Sk

j ~ek ) = ~ei · ~f j . From this, we can
write down a general form of S:

S = (S i
j ) =









~e1 · ~f1 . . . ~e1 · ~fi
... . . . ...

~ei · ~f1 . . . ~ei · ~fi









(12)

Note that the column vectors are orthogonal to
each other, and they are normalised. The columns
contain the information fi in the old system, and
the rows contain information on ei in the new sys-
tem. This gives origin to the term orthogonalma-
trix.

Looking at the determinant of S, and the fact that
SST = 1, we arrive at the fact that det S = ±1.
The positive determinant correspond to a special
orthogonal rotation, in which there are no reflec-
tions. Consequently, the negative determinant cor-
responds to the reflective rotations. The set of all
orthogonal matrices is called SO(n).

2 Special Relativity

Orthogonal transformations are important in SR:
namely to see it as the transformation of a rank
�

0
2

�

tensor g that is our scalar product. To sum

up, orthogonal transformations are exactly those that
leave the scalar product invariant. This is intuitive
as we think of rotations as active transformations
of a rigid body, requiring the distances and an-
gles between points to remain constant, i.e. non-
deforming. By applyingwhatwe have obtained up
to this point, we can carry our physics to the new
arena ‘spacetime’ where velocity, momentum, en-
ergy, and fields become four-dimensional quanti-
ties: vectors and tensors in R4!

2.1 Indices in 4D

So far, our setup has been in a n-dimensional Eu-
clidean geometry, where:

• the underlying space V is flat and rigid,

• distances, lengths, and angles are defined
through a positive-definite scalar product.

Spacetime M is a four-dimensional real vector
space.a Its elements are events that we specify
by one value for the temporal coordinateX 0 = t
and three values for the spatial coordinates X i =
(x, y, z). Note the contravariant nature of the
components. The convention is to use Greek
indices µ, ν, which run from 0 to 2.

aM in honour of H. Minkowski

Definition

Returning a previously meaningful physical quan-
tity in this relativistic regime of ours, the interval.
For two events A,B ∈ M located at Aµ and Bµ re-
spectively, they are connected by a vector Xµ =
Bµ − Aµ; the interval between these two events
is given by: I (A,B) = (X 0)2 − (X 1)2 − (X 2)2 −
(X 3)2 = (∆t )2 − (∆x)2. This is usually written
with the help of the Minkowski metric:

ηµν =









+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(13)

Similar to g , η is a symmetric rank-2 tensor, but it
is not positive definite: there are vectors Xµ ∈ M
such that η( ~X , ~X ) = 0 or even less than 0! (Flash
back to time-like, space-like separation, and the
light cone!) The change to the ‘definiteness’ if pre-
cisely shown in Sylvester’s Theorem of Inertia.

In this new regime, certain aspects of the Euclidean
paradigm are no longer true: In Euclidean 4D ge-
ometry, which is defined through the signature1
of g , which is [1,1,1,1], whereas in Minkowski
geometry, the signature, define through η, is
[1,−1,−1,−1]. This signature is known as the
Lorentzian.

Interpretation of angles and lengths, as we are fa-
miliar in plane-geometry is no longer possible. We
shall denote lengthwith a new term ‘squared length’,
i.e. ηµνXµX ν . This is used to characterise the re-
lationship between two events connected by ~X .
For ηµνXµX ν > 0, the events are timelike sepa-
rated (i.e. Xµ is within either the future of past

1The signature is composed of the entries on the diagonal
of a matrix.
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light cone of the origin), and when ηµνXµX ν < 0,
the events are spacelike separated (where no ex-
change of causal influence is possible). Forcing the
Euclidean idea that

Æ

ηµνXµX ν is some kind of
length would require us to live with some vectors
having imaginary length, and some vectors to have
zero length despite them not being the zero vector
(namely the lightlike ones).

Another difference we will have to account for
is that despite the fact that we are in an ONB,
our contravariant and covariant components are
no longer equal. Recall the transformation of in-
dices using gi j :

xi = gi j x j (14)

gi j = 1 From ONB (15)

InMinkowski space, X0 =X 0, but Xi =−X i , this
is again, due to the sign-change that we introduced
in the Lorentzian signature.

2.2 Boosts

Achange of inertial observerwill relate to a change
of coordinate system. And since the observers are
in inertial FoR, they will need to agree if a world-
line is straight or not, i.e. a linear change is nec-
essary. Thus we can devise the following transfor-
mation:

X ′δ =Λδγ X γ (16)

where Λ is the analogue to T from Euclidean ge-
ometry, similarly, Λ transforms the contravariant
components. By finding the inverse of Λ, we can
find the object that transform the covariant com-
ponents. Recall:

ST S = ST g S = g ′ = 1 (17)

which we can adapt to the Lorentzian signature,
by adding a factor of -1 whenever there is a change
in the position of a spatial index. Suppose we call
the inverseV ρ

σ , theMinkowski-analogue to S. The
transform will look like the following:

η′µν =V µ
α V ν

βηµν (18)

=VναV µ
β

(19)

= ηαγV γ
ν V ν

β (20)

= ηαγδ
γ
β

(21)

Given a Lorentz boostΛγν , its inverse isΛνγm this is
the equivalent of the Euclidean T −1 = T , which
is true for orthogonal matrices. Two properties
arise from this definition:

Λγν Λ
ν
β = δ

γ
β

(22)

ηαβ =Λ
µ
αΛ

ν
βηµν (23)

Lorentz boosts are transformations that leave
the Minkowski metric invariant.

Key Point

2.3 Lorentz Group

Similar to SO(3), the full set of 4×4 Lorentz trans-
formations also form a group. Let R be an arbi-
trary 3× 3 rotation matrix. Then:

Θαβ =









1 0 0 0
0
0 R
0









is a 4 by 4 matrix which leave the time untouched,
but rotating space. Such is the case then, the set
of all those matrices can be parametrised by the
three numbers (e.g. the Euler angles or Cayley-
Klein parameters). Similarly, the set of all Lorentz
boosts can also be parametrised by three numbers,
(ux , uy , uz ). In general, the Lorentz boost may be
written as follows:

Λαβ =











γ γ ux γ uy γ uz
γ ux
γ uy 1+ γ−1

u2 ~u · ~uT

γ uz











(24)

where (~u · ~uT ) = ui u j , a 3 by 3 matrix.

If we build all possible products of boosts Λ and
rotations Θ, we can span the full six-dimensional
Lorentz group: the group of all linear spacetime
transformations that leave the Minkowski metric
invariant.
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The Lorentz group is called SO(1,3) and it is
one of the most important objects in mathemat-
ical physics. Special relativity is nothing more
than the study of the symmetry group SO(1,3).
From here, making the switch to general relativ-
ity becomes not impossible.
Suppose the Minkowski metric is replaced by
a physical field gµν , such that the components
vary from place to time, or event to event. Such
a scalar product could encode, amongst other
things, the local curvature of spacetime. As long
as the symmetric property is enforced everywhere,
there will be an additional ten degrees of free-
dom. The ‘only’ thing left to do now is to spec-
ify the dynamics of these ten new degrees of
freedom, which, if successfully completed, will
yield general relativity.

Key Point

3 Electrodynamics

Recall:

∇· ~B = 0 (25)

∇× ~E =−1
c
∂ ~B
∂ t

(26)

∇· ~E = 4πρ (27)

∇× ~B = 1
c
∂ ~E
∂ t
+

4π
c
~J (28)

where the first two of the four are the homoge-
neous Maxwell equations, and the later two are
the inhomogeneous equations. Charge density ρ
and current density ~J are connected through the
requirement of the total charge Q =

∫

ρdV re-
main constant. The charge can only change by a
flux of charged flowing across the boundary ∂ Ω of
our volume V that we are integrating over. This
leads to the charge conservation equation:

dρ
dt
+∇· ~J = 0 (29)

Also recall, for a field ~Bthat is solenoidal, i.e. ∇ ·
B = 0 ∃ ~A such that ~B = ∇× ~A. Similarly, for a
conservative field, ~E , i.e. ∇× ~E = 0,∃ϕ such that
~E =∇ϕ.

3.1 Gauge Transformation

By expressing theMaxwell equations using the scalar
and vector potentials, we discover that these po-
tentials are ‘many-to-one’. i.e. there are many dif-
ferent potentials that lead to exactly the same fields.
More precisely: two sets of potentials will yield
the same ~E and ~B exactly if they are related by a
gauge transformation:

ϕ2 = ϕ1+
1
c
∂ ζ

∂ t
(30)

~A2 = ~A1−∇ζ (31)

for ζ (t , ~x) is a scalar function. Inserting the po-
tentials into the inhomogeneous equations, we re-
cover the wave equations:

�ϕ = 4πρ (32)

� ~A= 4π~J (33)

To arrive at the equations above, we need to gauge-
transform the potentials judiciously, such that they
satisfy the Lorenz gauge condition:

1
c
∂ ϕ

∂ t
=∇· ~A= 0 (34)
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