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1 Changing Bases

Any arbitrary none-null vector o € V, where V
is a vector space over R” and has finite dimension
n = dim V can be expressed in component form
as follows:

V= ‘Ulel

Suppose we now change from our old basis {€;} to

a new basis {f;}, such that the new basis is related
to our old basis via the following relation:

-

fi=¢Si;

(1)

By definition, (1) codifies a linear transforma-
tion. We can define an inverse matrix Tjk to the
matrix §;; that carries out the inverse transforma-
tion such that the following is true:

%=/iTj

Note that we assume det(S) # 0.
Treating the change of basis as a passive transforma-
tion, i.e. leaving the vectors themselves untouched,

=€ Tji ()

it should be obvious that the components of the
vector will correctly transform via the matrix 7.

()

/ —
x; = Tjix;

1.1 Gradient... a vector yet?

Take a scalar field ¢ : V — R, unsurprisingly, the
components in our é-basis contain derivatives af-
ter the coordinates x;, i.e.: (Vg), = d.¢; conse-
quently, in the new system, nabla should contain
derivatives w.r.t. the new components: (Vgo);. =

d!¢. The transformation rule we are after is there-
fore one that can transform x’-derivatives to x-
derivatives. Applying the chain rule will get us
started:

d_amde_ 2,

ax]’. B E’x; dx, Y Ix;
Astonishingly, nabla does not transform the way
we expected a vector to transform! We can rec-
oncile with this discovery by considering what is
meant by the gradient operator, a directional deriva-
tive. For example: if we start at a point 7, in space
and would like to know how ¢(7,) varies as we

travel in different directions, call that A:

-

dx:

prid l

V¢ is a map, in which we insert a direction vec-
=

tor h, and receive a real number, i.e. the speed
V; ¢ with which ¢ changes in that direction.

This map is necessarily linear in 5
We can classify the n-component objects we
encountered so far by how they transform, either:

1. like a vector, or

2. like nabla

We can build on this by defining some new ob-
jects.



1.2 Linear Forms and Dual Space

:5 Definition

A linear form on a real vector space V is a linear
map a : V — R. The set of all linear forms on a
vector space V, {4;} is called the dual space V*.

The sum of any two linear forms is again a linear
form, a telltale sign that we are in a vector space!
And indeed the dual space is a vector space.

Suppose we devise a linear form «;, such that it
returns the j-th component of a vector:

Then the following can be inferred:
@;(¢)=9;; 7)

1) i is said to be the dual basis to ¢;. And it is also

important to note that dim V* = dim V. By defin-
ing a new dual basis y, via y,(f;) = &, we can
extract the new components of @ in {y; }:

-

a;‘:&(fj):&(gisij)zsijai (8)

This is exactly the way that gradient operator
transforms, as it is a linear form.

&Key Point

Objects that transform according to (1) is called
covariant and denoted with a lower index.
Objects that transform according to (3) is called
contravariant and is assigned an upper index.

Note that Einstein summation convention will al-
ways contract an upper and a lower index.

e Component-form of vectors: ¥ = v'¢;, @ =

.o’
a]a)

e Vector insertion with one-form:
a(v)=alw;v'e; = av‘@j’. =a,v’.

* Change of basis: ];;

_Qiz
= S] el' .
¢ Inverse matrices: S; and T].i are matrix 1n-
verses of each other: S]‘. T; = 3;, and TZSf’ =
a
3.

We can now introduce a more abstract, multi-slotted

linear machines:

1.3 Tensors

5 Definition

A tensor of rank [g :| is a real valued function:

T(V'x..xV'xVx..xV)->R (9)

The tensor T has p one-form slots and ¢ vector
slots, which is linear in every slot.

1.3.1 Scalar Products

Using our newly devised object, a tensor, we can
define the scalar product (aka metric) as a two-slot
map:

g:VxV-R (10)

The metric has the following properties:

® symmetric, z.e. g(#,7)= g(v,u) for u,v €
V.

e bilinear, i.e., linear in both slots: for vectors
#,0,w €V, and number A, u €R. g(Au +
uv, @)= Ag(i, @)+ ug(v,@)

® positive-definite, for any vector v : g(9,7) >

0.

Equipped with the metric in our ‘newly devised’
formalism, we can rigorously define what is meant
by an orthonormal basis.

g Definition

For a vector space V and a scalar product g :
V x V — R. A basis with the property:

- o 1
g(eiaej):{

0 otherwise

ifi=y (11)

is called an orthonormal basis.

In an ONB, the matrices g;; and g;; are sim-

ply the unit matrix and thus: 4; = a'. The isomor-
phism between V' and V*, in this case, is canoni-
cal.



1.4 Rotations

A linear transformation on V which send an ONB
to another ONB is a rotation. Rotations are char-
acterised by orthogonal matrices. By means of ex-
tracting components from a vector: ie.: g(v,¢€;),

€
we can extract the components of the rotation ma-

trix S]‘:: S; = g(gi,SfEk) =53 ];; From this, we can
write down a general form of §:
é-h é-fi

: : (12)

e&-fi o &-f;

Note that the column vectors are orthogonal to
each other, and they are normalised. The columns
contain the information f; in the old system, and
the rows contain information on e; in the new sys-
tem. This gives origin to the term orthogonal ma-
trix.

Looking at the determinant of S, and the fact that
SST = 1, we arrive at the fact that detS = +1.
The positive determinant correspond to a special
orthogonal rotation, in which there are no reflec-
tions. Consequently, the negative determinant cor-
responds to the reflective rotations. The set of all
orthogonal matrices is called SO(n).

2 Special Relativity

Orthogonal transformations are important in SR:
namely to see it as the transformation of a rank

[g] tensor g that is our scalar product. To sum

up, orthogonal transformations are exactly those that
leave the scalar product invariant. This is intuitive
as we think of rotations as active transformations
of a rigid body, requiring the distances and an-
gles between points to remain constant, ze. non-
deforming. By applying what we have obtained up
to this point, we can carry our physics to the new
arena ‘spacetime’ where velocity, momentum, en-
ergy, and fields become four-dimensional quanti-
ties: vectors and tensors in R*!

2.1 Indices in 4D

So far, our setup has been in a #-dimensional Eu-
clidean geometry, where:

* the underlying space V is flat and rigid,

e distances, lengths, and angles are defined
through a positive-definite scalar product.

Eg Definition

Spacetime M is a four-dimensional real vector
space.” Its elements are events that we specify
by one value for the temporal coordinate X° = ¢
and three values for the spatial coordinates X’ =
(x,7,z). Note the contravariant nature of the
components. The convention is to use Greek
indices u,v, which run from 0 to 2.

“M in honour of H. Minkowski

Returning a previously meaningful physical quan-
tity in this relativistic regime of ours, the interval.
For two events A, B € M located at A# and B re-
spectively, they are connected by a vector X# =
B“ — A#; the interval between these two events
is given by: I(A4,B) = (X°)? —(X!)? —(X?)* —
(X°)* = (At)* — (Ax)*. This is usually written
with the help of the Minkowski metric:

+1 0 0 0
0 —1 0 0

Tw=10 0o —1 0 (13)
0 0 0 —I

Similar to g, 7 is a symmetric rank-2 tensor, but it
is not positive definite: there are vectors X# € M
such that r]()_() X ) = 0 or even less than 0! (Flash
back to time-like, space-like separation, and the
light cone!) The change to the ‘definiteness’ if pre-
cisely shown in Sylvester’s Theorem of Inertia.

In this new regime, certain aspects of the Euclidean
paradigm are no longer true: In Euclidean 4D ge-
ometry, which is defined through the signature!
of g, which is [1,1,1,1], whereas in Minkowski
geometry, the signature, define through 7, is
[1,—1,—1,—1]. This signature is known as the
Lorentzian.

Interpretation of angles and lengths, as we are fa-
miliar in plane-geometry is no longer possible. We
shall denote length with a new term ‘squared length’,
1.e. 1, X#X". This is used to characterise the re-

lationship between two events connected by X.
For n,,X“X" > 0, the events are timelike sepa-
rated (z.e. X*# is within either the future of past

"The signature is composed of the entries on the diagonal
of a matrix.



light cone of the origin), and when 5, X #X” <0,
the events are spacelike separated (where no ex-
change of causal influence is possible). Forcing the
Euclidean idea that /7, X#X" is some kind of
length would require us to live with some vectors
having imaginary length, and some vectors to have
zero length despite them not being the zero vector
(namely the lightlike ones).

Another difference we will have to account for
is that despite the fact that we are in an ONB,
our contravariant and covariant components are
no longer equal. Recall the transformation of in-
dices using g;;:

(14)
(15)

In Minkowski space, Xy = X°, but X; = —X?, this
is again, due to the sign-change that we introduced
in the Lorentzian signature.

=g .y
xz_gz]x

g;; =1 From ONB

2.2 Boosts

A change of inertial observer will relate to a change
of coordinate system. And since the observers are
in inertial FoR, they will need to agree if a world-
line is straight or not, ie. a linear change is nec-
essary. Thus we can devise the following transfor-
mation:

X% = AOx7 (16)
where A is the analogue to T from Euclidean ge-
ometry, similarly, A transforms the contravariant
components. By finding the inverse of A, we can
find the object that transform the covariant com-
ponents. Recall:

STs=8Tgs=¢'=1 (17)
which we can adapt to the Lorentzian signature,
by adding a factor of -1 whenever there is a change
in the position of a spatial index. Suppose we call
the inverse V', the Minkowski-analogue to S. The
transform will look like the following:

Ny =V V50 (18)
=V, Vg (19)
=14, V) Vy (20)
= ’M% (21)

Given a Lorentz boost Al its inverse is Alm this is
the equivalent of the Euclidean T7~! = T, which
is true for orthogonal matrices. Two properties
arise from this definition:

AN, = 32 (22)
naﬁ :AIZAVﬁ’?luv (23)

&Key Point
Lorentz boosts are transformations that leave
the Minkowski metric invariant.

2.3 Lorentz Group

Similar to SO(3), the full set of 4 x4 Lorentz trans-
formations also form a group. Let R be an arbi-
trary 3 X 3 rotation matrix. Then:

0 0 0

R

=R
[l
o o o~

is a4 by 4 matrix which leave the time untouched,
but rotating space. Such is the case then, the set
of all those matrices can be parametrised by the
three numbers (e.g. the Euler angles or Cayley-
Klein parameters). Similarly, the set of all Lorentz
boosts can also be parametrised by three numbers,
(#,1y,1,). In general, the Lorentz boost may be
written as follows:

y |ru yu, yu,
a }/%x
A% = s o
g yu, ﬂ—l—yw—zlu ul

Y,

(24)

where (7 - 47 )= u;u,a 3 by 3 matrix.

1ty 3
If we build all possible products of boosts A and
rotations ©, we can span the full six-dimensional
Lorentz group: the group of all linear spacetime
transformations that leave the Minkowski metric
invariant.



&Key Point

The Lorentz group is called SO(1,3) and it is
one of the most important objects in mathemat-
ical physics. Special relativity is nothing more
than the study of the symmetry group SO(1,3).
From here, making the switch to general relativ-
ity becomes not impossible.

Suppose the Minkowski metric is replaced by
a physical field g,,, such that the components
vary from place to time, or event to event. Such
a scalar product could encode, amongst other
things, the local curvature of spacetime. Aslong
as the symmetric property is enforced everywherg
there will be an additional ten degrees of free-
dom. The ‘only’ thing left to do now is to spec-
ify the dynamics of these ten new degrees of
freedom, which, if successfully completed, will
yield general relativity.

3 Electrodynamics

Recall:

V.B=0 (25)

. 19B
VxE=—222 26
% c dt (26)
V.E=4rp (27)
vxh=lE  4n7 (28)

c It c

where the first two of the four are the homoge-
neous Maxwell equations, and the later two are
the inhomogeneous equations. Charge density p

and current density J are connected through the
requirement of the total charge Q = [ pdV re-
main constant. The charge can only change by a
flux of charged flowing across the boundary dQ of
our volume V' that we are integrating over. This
leads to the charge conservation equation:

dp

V-_):O
dt+ /

(29)

Also recall, for a ﬁel(i Bthat is solenoidal, i.e. V-
B = 0 3A such that B = V x A. Similarly, for a

conservative field, E , e Vx E= 0,3¢ such that
E=Vo.

3.1 Gauge Transformation

By expressing the Maxwell equations using the scalar
and vector potentials, we discover that these po-
tentials are ‘many-to-one’. z.e. there are many dif-
ferent potentials that lead to exactly the same fields.
More precisely: two sets of potentials will yield
the same E and B exactly if they are related by a
gauge transformation:

o 1d
¢2_¢1+C85 (30)
A=A, -V (31)

for {(z,x) is a scalar function. Inserting the po-
tentials into the inhomogeneous equations, we re-
cover the wave equations:

(32)
(33)

O¢ =47p
I:L/‘_f: 47'Ef

To arrive at the equations above, we need to gauge-
transform the potentials judiciously, such that they
satisty the Lorenz gauge condition:

(34)
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